A Contraction of the second se

Gene Rearrangement and Recombination

- Immunoglobulins (antibodies) are proteins produced by B cells to protect the body against foreign bodies
 - > They consist of 4 subunits (2 *light* and 2 *heavy*) linked together via disulfide bonds, and they contain many regions including constant and variable regions
- The human body can possess approximately 10¹² different B lymphocytes
 - Each B cell can produce one type of an immunoglobulin which has a unique antigen-binding variable region (the site for binding antigens) that is encoded by unique genes formed by site-specific *recombination* during B-lymphocyte development (from naïve to mature)
 - Each heavy gene consists of 150 variable regions (V), 12 diversity exons (D), 4 joining (J) exons, and one constant exon (C), one of each is combined with one of the others
 - > During lymphocyte development, one from each the total number of *heavy* chains that can be generated is about 7200 ($150 \times 12 \times 4$) and 600 *light* chains are produced by the same mechanism resulting in a possible 4×10^6 different combinations, the *joining* of the different segments often involves the <u>loss or gain</u> of one to several nucleotides resulting in 10¹¹ different immunoglobulins and also *somatic hypermutation* introduces mutations during DNA replication enhances variety
- The T cell receptor on the surface of T lymphocytes is produced by site-specific recombination as well
- A new type of cancer treatment (CAR-T cell therapy) utilizes a patient's T cells that have been engineered to express an artificial T-cell receptor that recognizes antigens on the surface of tumor cells

Gene Amplification

- It is an *increase in copy number* of a restricted chromosome region increasing the *quantity* of DNA in these regions and, hence, *increasing RNA and protein* production
- *Cancer cells* use it to develop *resistance from methotrexate* by the amplifying dihydrofolate reductase gene (enzyme plays a key role in DNA synthesis)
- Breast tumor cells become amplify human epidermal growth factor receptor 2 (HER2) making them more aggressive in growth and progression
 - > *Herceptin (trastuzumab)* is a treatment for HER2 enriched cancers, where it represents *monoclonal* antibodies that bind the HER2 on the cancer cells and prevent proliferation, and induce the activity of immune cells to get rid of them
- Gene amplification is detected by:
 - Immunohistochemistry (involves antibodies) to detect staining intensity
 - \checkmark If the score was 0 or 1 (no amplification, 2 (unequivocal), 3 (amplification is ensured)
 - ✓ In the case of <u>unequivocal</u>, FISH is be done

Fluorescence in situ hybridization (FISH) uses probes specific for the gene amplified, as the number of fluorescent dots increases, that indicates amplification

Applications for alternative splicing and polyadenylation

• *UDP-glucuronosyltransferase (UGT)* enzymes transfer glucuronic acid (glucuronidation) to xenobiotics and endogenous compounds making them water soluble allowing them for biliary or renal elimination

> It acts on hundreds of compounds, including hormones, flavonoids, and environmental mutagens

- These enzymes have the *same catalytic activity*, with *different substrate-binding site*
- These enzymes are encoded in a gene containing 5 exons
 - Exons from (2-5) encodes the catalytic domain (unchanged)
 - **Exon 1** encodes the substrate-binding domain (*specificity*)
 - It contains 9 sub-exons each one has its own promoter and they are spliced generating 9 possible <u>UGT1A transcripts</u>
- Alternative splicing produces different proteins
- Some exons and genes can have *many poly-A sites* where transcription is terminated affecting the *length* of the transcript produced which affects the <u>regulation of expression</u> of this gene
 - Transcription can be terminated at different poly-A sites generating short and long mature mRNAs

Regulation of Transcription in Prokaryotes

- **Lac operon** is a polycistronic gene that encodes for 3 different proteins with different structure and function but act together in the same metabolic pathway (lactose metabolism)
- The 3 proteins are:
 - > *Permease: Transport* of lactose into the cell
 - **β**-*Galactosidase: Cleavage* of lactose into galactose and glucose
 - ✓ It can also convert lactose into *allolactose*
 - > Transacetylase: Acetylation of toxic thiogalactosides to protect bacteria from toxicity
- *Operator* is a sequence *downstream the promoter*, represents the binding site of the *lac repressor* which prevents (blocks) the binding of the polymerase to the promoters, and so *inhibiting transcription*
 - Lac repressor is produced from "*lac I gene*"
 - Allolactose binds the repressor and prevents it from binding to the operator which *induces transcription* so it is considered as **positive regulation**

Poly(A) site

Poly(A) site

Nucleus

poly(A) site

- Some promoters are *leaky* in some cells, and explains the relation in the expression of β-Galactosidase and synthesis of allolactose
- *Catabolite activator protein (CAP)* is a regulatory protein that binds to a sequence *upstream* of the promoter where CAP can then interact with the RNA polymerase to facilitate its binding to promoter (P)

> CAP *activates the expression* of lac operon

• *High glucose levels inhibit expression* by <u>inhibiting adenylyl cyclase</u> causing decreased cAMP which affects the activity of CAP, even if lactose and allolactose are present because glucose is utilized by the cells preferentially (<u>negative regulation</u>)

Lactose X	Lactose √	Lactose X	Lactose √
Glucose X	Glucose X	Glucose √	Glucose √
No expression	Expression	No expression	No expression

- *Cis regulatory elements:* DNA regulatory sequences affect the expression for only genes linked on the *same* DNA molecule or same domain (close-by)
 - > Examples: Promoter, Enhancer, Silencer
- *Trans regulatory elements:* Proteins or RNA molecules affect the expression of genes located on chromosomes or domains *different* than that where they are encoded
 - > Examples: Repressor, transcription factors
- Some mutations can cause:
 - > Constitutive expression (always on) such as defecting operator or Lac I mutations
 - Non-inducible or repressed expression (always off) such as defective promoter and RNA polymerase mutations, in addition to hyperactive repressor or gene I mutations

Regulation of Transcription in Eukaryotes

- It is similar to that in the prokaryotes, but more complex
- Transcription in eukaryotic cells is controlled by:
 - > Cis-acting elements (location sensitive) such as Promoters, PPE, enhancers, and silencers
 - > *Trans-acting factors* such as transcriptional regulatory proteins (activators, repressors)
 - ✓ It involves DNA and chromatin structural and chemical modification, and noncoding RNA
 - ✓ TFs can regulate transcription by *epigenetics* which alters gene expression *without affecting the DNA sequence* via structural and chemical modifications
- DNA exists as chromatin (mixture of DNA and Proteins)
 - Nucleosome: The first level of chromatin packing, in which DNA is wrapped around an octamer of histone proteins (H2A, H2B, H3, and H4) and a Histone 1 molecule that stabilizes the interaction
 - > The octamer with the wrapped are called *nucleosome core particle*

- **Free linker DNA** between every two nucleosome core particles
- > DNA can either be *loosely* (*euchromatin*) or *tightly* (*heterochromatin*) condensed
- Histones has 2 main domains:
 - A *histone-fold*, which is involved in interactions with other histones and in wrapping DNA around the nucleosome core particle
 - An *amino-terminal tail*, which extends outside of the nucleosome, and is *rich in lysine (K)*
- The packaging of eukaryotic DNA in chromatin can regulate transcription
 - > Active genes exist in *euchromatin* and *inactive* genes (inaccessible) exist in *heterochromatin*
 - ✓ Insulin gene in the pancreas is euchromatic and in neurons is heterochromatic
 - > Regulatory proteins switch between the two structures of chromatin
- About 2000 transcription factors are encoded in the human genome (10% of protein-coding genes)
- *Positive TFs (activators)* have <u>at least two</u> independent domains:
 - > DNA-binding domain
 - Activation domain or functional domain which stimulates the transcription by:
 - Interact Mediator proteins and general TFs, such as TFIID, to recruit the RNA polymerase and facilitate the assembly of a transcription complex on the promoter
 - ✓ *Modifying chromatin* with the aid of coactivator

• *Eukaryotic repressors* can consist from a binding domain only or can have a repressor domain

- **Block** the binding of activators to regulatory sequence
- It can have *active repression* domains that inhibit transcription by *interactions* with Mediator proteins or general transcription factors
- > *Modifying chromatin* with the aid of corepressors
- How are chromosomal structures altered?

Change the structure and position of nucleosomes

- Chromatin remodeling factors (eukaryotic only) facilitate the binding of transcription factors by:
 - > *Removing histones* from DNA and altering nucleosome structure allowing protein binding to DNA
 - > *Repositioning nucleosomes* making DNA sequences accessible

Chemically modifying histones

• *Histone acetylation:* Is the addition of *acetyl group* that hides the positive charge on lysine which is responsible for the interaction between the histone and DNA which generally *loosens* the chromatin and *promotes the initiation* of transcription (<u>Actively transcribed chromatin</u>)

Domain: A 3D structure that is part of a protein's structure, has <u>independent</u> *structure* and *function* from the rest of the protein (can be separated from the protein and still be functional)

- Histone can also be *methylated* or *phosphorylated*
- The effect, whether transcriptional activation or repression, depends on the modification sites
- Histone modifications can: <u>alter chromatin structure</u> and provide <u>binding sites</u> for other proteins that can either activate or repress transcription
- Transcriptional activators and repressors are associated with coactivators and corepressors
 - > Coactivators have histone acetyltransferase (HAT) which activates transcription
 - ✓ *TFIID* associates with histone acetyltransferases
 - > Corepressors have histone deacetylase (HDAC) which inhibits transcription

Chemical modification of cytosine

- Cytosine residues can be *methylated* at the 5'- carbon position specifically at *CG sequences* called *CpG islands* near promoters
- DNA methylation reduces (repress, inhibit) gene transcription by:
 - Blocking activator binding to DNA
 - > Inducing *heterochromatin* formation by recruiting chromatin compacting proteins
- Methylation is a mechanism of *genomic imprinting* (<u>either</u> the paternal or maternal genes is active)
 - This is the case for 75 genes
 - > Methylation is *inherited* following DNA replication

Binding of noncoding RNAs to DNA

- More than 50,000 long noncoding RNAs (lncRNA, each >200 nucleotides long), in human genome
 - > *LncRNAs* can be *homologous* to certain DNA sequences (more sensitive and specific)
 - They can *form complexes with chromatin and DNA* modifiers to activate or repress gene expression via chromatin modification and histone methylation
 - They can complex with transcription factors (e.g. TFIIB), Mediator, or RNA processing proteins

- LucRNA can act in <u>cis or trans</u>
- X chromosome inactivation: IncRNA is transcribed from Xist gene located on one of the two X chromosomes in *females* where Xist RNA *coats* the X chromosome and promotes the recruitment of a protein complex that *methylates* histone 3 leading to *chromosomal condensation*
 - Dosage compensation: X-chromosome inactivation in females to equate the number of X chromosomes between males and females

- *Enhancer RNA (eRNA):* RNA <u>transcribed from enhancer</u> sequences and complementary to it where it can regulate transcription of adjacent genes
- Also, promoters and telomeres can be transcribed (telomeres can produce lncRNA called TERRA)

- **Identical twins** have the exact *same genetic* material but they can have some *differences* due to *epigenetics* which changes over time, which is called <u>non-sequence dependent inheritance</u>
 - > Epigenetics can be <u>inherited</u>
 - Life style can affect epigenetics which can affect the risk for getting a disease

www.arkan-academy.com

962 790408805